
J .  Fluid Mech. (1976), vol. 77, part 3, p p .  417-431 

Printed in  Great Britain 
417 

Giant waves 
By RONALD SMITH 

Department of Applied Mathematics and Theoretical 
Physics, University of Cambridge 

(Received 8 April 1976) 

It is suggested that giant waves, as observed on the Agulhas Current, occur 
where the wave groups are reflected by the current. The local behaviour of the 
wave amplitude is modelled by the nonlinear Schrodinger equation 

ia, = a PP -pa+Plal2a. 

For waves of a given incident wave amplitude the steady solutions are stable. 

1. Introduction 
During the closure of the Suez Canal a number of ships, particularly oil 

tankers, have reported extensive damage caused by giant waves off the south- 
east coast of South Africa (Mallory 1974; Sturm 1974; Sanderson 1974). Two 
particularly unfortunate vessels are the World Glory, which broke in two and 
sank in June 1968, and the Neptune Xapphire, which lost 60 m of its bow section 
in August 1973. We can only speculate that giant waves may account for many 
of the ships which have been lost without trace off this coast. When returning 
from the Persian Gulf the tankers take advantage of the rapid Agulhas Current, 
and all except one of the eleven incidents listed by Captain Mallory (1974) 
involved vessels riding on the current. By examining weather charts, Mallory 
showed that when the incidents occurred the dominant wind-produced waves 
were opposed by the current. 

Even the longest swell can be regarded as being short relative to the horizontal 
scale of current variations. Thus we can expect a ray solution to give a good 
overall description of how the wave field is modified by the current (Longuet- 
Higgins & Stewart 1961). For waves of small steepness this leads to consideration 
of the local dispersion relation 

Here w is the wave frequency, k the local wavenumber, U the (effectively) 
depth-independent current, and Q the dispersion relation in the absence of the 
current. For deep-water waves Q = (g[kI)#. According to the ray solution there 
is not separate conservation of wave and stream energies (Longuet-Higgins BE 
Stewart 1961). However, the wave action (local wave energy density divided by 
Q) propagates a t  the velocity U + aQ/ak of a wavegroup (Bretherton & Garrett 
1968). In  particular, this implies that when the waves are opposed by the current 
the wave height will be relatively large as not only is the group velocity reduced, 

w = U.k+Q(x,k) .  
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but also the waves receive energy from the current (i.e. R is increased). A more 
spectacular enhancement of wave heights is hinted at  if there should exist a 
(possibly moving) curve a t  which the wave groups are reflected. At such a caustic 
of the ray paths the ray solution predicts a singularity in the wave height. Of 
course, the ray solution is not valid near such singularities (McKee 1974). 
However, in storm conditions even a doubling of the wave height would be quite 
traumatic. Thus we are led to specuIate that when waves on an opposing current 
come across a reflexion line giant waves are caused (Peregrine 1976). 

Although giant waves are far from being infinitesimal, we can hope that many 
aspects of their behaviour can be modelled, at least qualitatively, by the equa- 
tions which apply when the wave amplitude is such that the nonlinearity has an 
order-one effect. An estimate of this amplitude range can be obtained by com- 
paring the displacement of the reflexion line due to finite amplitude effects 
with the width of bhe highly amplified region. Let e3 denote the ratio of a typical 
wavelength to a typical length scale for current or depth variations. From linear 
theory the width of the highly amplified region is of order €2 (McKee 1974), 
while from nonlinear theory the displacement of the reflexion line due to the 
increased group velocity is of the order of the wave steepness squared (Peregrine 
& Thomas 1976). Thus, for linear and nonlinear effects to be comparable the wave 
steepness near the caustic must be of order E .  We note that this corresponds to 
the waves far from the caustic having a steepness of order €2. 

The above scaling assumptions are not unrealistic for giant-wave conditions 
on the Agulhas Current. The incoming swell typically has a wavelength of 
200m and a steepness of 0.08 in the open ocean (Mallory 1974), and a, typical 
width of the current is 140 km. The ratio of lengths gives E s= +, and the steepness 
of the incoming wave is not unreasonably large relative to the order-of-magnitude 
estimate €2 = &. These values suggest that there would be about a threefold 
amplification of the wave height near the caustic. Thus the crest-to-trough wave 
height could be as much as 15 m. Locally generated waves superimposed upon 
such a giant wave could aggravate the situation by a further 5m. The scaling 
assumptions are less pertinent for a moving caustic associated with the shorter 
and steeper locally generated waves. 

Unfortunately, such would be the complexity of a calculation valid for weakly 
nonlinear waves near a moving caustic on a rotational stratified non-uniform 
current that it justifies restricting attention to a simple case. Thus in $5 2 and 3 
we f i s t  study deep-water waves close to a stationary caustic which is per- 
pendicular to a steady unidirectional irrotational current. The choice of problem 
and much of the analysis is guided by Davey & Stewartson’s (1974) work on the 
evolution of almost plane waves. The properties of a model equation are con- 
sidered in $4 .  Finally, $ 3  5 and 6 are directed towards the possibility of using the 
results of the paper for more realistic situations. Complementary studies for 
infinitesimal waves near curved moving caustics and nonlinear waves in a region 
bounded away from the reflexion line are given by Smith (1975) and Peregrine 
& Thomas (1976). 
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2. Derivation of the model equations 
Let U and L respectively be typical values of the current velocity and the 

horizontal length scale of current variations. If deep-water waves with wave- 
lengths of order e3L are to be reflected by the current, then it is appropriate 
to define 

For definiteness we shall assume t h a t  the vertical scale is L, but we note that the 
major results of this section remain valid provided that the depth scale greatly 
exceeds the wavelength. In  dimensionless form the velocity potential @ and the 
small undulations e35 of the undisturbed current satisfy the equations 

V2@ = 0, a</at + V@ . Vg = ~ - ~ a @ / a z  on z = e35, 
5+ a@/at + +(V@)2 = o on z = ~ 3 c ,  a @ p z  + V Q .  V h  = o on z = - h, 

where h is the water depth and V is the three-dimensional gradient operator 

€ = (U2/gL)$. 

] (1) 

(a/ax, spy, a / w .  
From (1) we infer that @ and g have asymptotic expansions of the form 

@ = + c3@, + O(e6),  C = co + O(e3) ,  

where the Qj and Q are all independent of B .  Employing a Taylor series in z to 
transfer the free-surface boundary conditions to the horizontal surface z = 0 
and then extracting like powers of €3 from (l), we can obtain a sequence of field 
equations and boundary conditions which are all independent of B .  In  particular, 
if the current is independent of both y and t ,  then on z = 0 we have 

aQ0/az = 0, c,, = - + u2, a2@o/az2 = - du/ax, 

where U is the value of a@,/ax on z = 0. (More general currents are considered 
in 95.) 

The nonlinear equations for the waves can be obtained from (1) by replacing 
5 by [+ €7, 0 by Q + e4q5 and using the Taylor-series operator 

i + E47a/az + ++ya/a2)2 + . . . 
to transfer the free-surface boundary conditions from z = e3[+e47 to z = e3[. 

The aim of this section is to derive an approximate solution for the waves 
which is valid within a horizontal distance of order e2 of the reflexion line and 
within a vertical distance of order €3 of the free surface (i.e. where the wave 
amplitude is largest). If these were the only short scales involved, then for a 
boundary-layer type of solution it would suffice to introduce stretched co- 
ordinates (Nayfeh 1973, chap. 4) 

X = E - Z X ,  Z = B - ~ Z  - 5 (2 4 
and to use local power-series representations for the undisturbed current, 

e.g. 

However, for the present problem the separation of the individual wave crests 
has a length scale of only €3. Furthermore, any unsteadiness is swept along the 

u = U(0) + s2x U(1) + + € 4 F  U(2) + . . . . 

27-2 
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caustic a t  the group velocity, taking a time of order E to traverse the highly 
amplified region. To cope with these additional short scales we introduce the 
phase, convected and evolution co-ordinates (Davey & Stewartson 1974) 

e = E-3( - @t + zy + x), Y = c-2(y - t ) ,  T = €-it. ( 2 b )  

Thus, in the nonlinear equations for the waves we formally express V and 
a/& in terms of the undetermined functions k(e)  and c(c) and the derivative 
operators a/aO,  a/aX, a/aY, 8 / 8 2  and a/aT. In  the spirit of the method of multiple 
scales, we shall require that the waves are 2n-periodic with respect to 8 (Nayfeh - 

1973, chap. 6). 
The resulting version of the equations for the waves is 

a2$  a2$ 

ae2  az2 
( ~ ~ e + z ~ o ) + +  a 2 4  +-) a24 = o(E31 ,  

ax2 ay2 
[k2+Z2]-+- +26 k -  

ar a 2 4  1 a$ 
ae aeaz 

a2+ e r 2 a 3 +  
+[k2+Z2]q--  = ~ + ~ ~ - ~ + - - + O ( e 3 )  az 2 a 2 3  on Z = 0, 

7 + (kU(0)- w )  2 +e  ae 
+ + (g)2 + (kU(O)- w )  71 - aeaz 

As is usual in such boundary-layer calculations, the far-field boundary condition 
a t  the seabed is relaxed to a condition of no exponential growth for large negative 
2. 

The 27r-periodicity requirement makes it natural for us to use Fourier-series 
representations for $ and 7 : 

m 

@ = @,exp (in@ with $-% = $2. 
I%=- m 

The and r1 terms correspond to infinitesimal waves and the other terms can be 
regarded as being forced by the nonlinearities in the free-surface boundary 
conditions (3b ,  c). For the higher Fourier components this forcing has a length 
scale of the order of a wavelength and, in the absence of resonance, the response 
has the same magnitude as the forcing. However, for the &independent mode the 
forcing has the longer length scale of the wave envelope and, even in the absence 
of resonance, the $,, response is one order larger than the corresponding nonlinear 
terms in the free-surface boundary conditions. Davey & Stewartson (1974) show 
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how this enhancement of the #, term precludes the evolution of almost plane 
nonlinear waves in water of moderate depth from being described by a single 
nonlinear partial differential equation. Here we have the extra complications of 
there being a caustic and a current; hence the compensating simplification of 
the water being very deep. 

To obtain a regular perturbation solution of (3) when E is small we put 

k = k,+Ek1+€2JC2+ ..., c = c,+sc,+ ...) 
$0 = E $ , l + . . . ,  #, = E"-~$,,,-, + . . . , etc. 

Not unexpectedly, the leading-order terms in (3) give the eigenvalue problem 
for infinitesimal deep-water waves. The solution is 

w = Ic, U(O)+ K*, qlo = $,, = A exp (KZ) with K~ = ki +Iz, (4a) 

where the amplitude factor A ( X ,  Y ,  T )  is to be determined. The equations for 
$,, and T,, are inhomogeneous versions of the leading-order eigenvalue problem, 
and therefore can only have a solution provided that the inhomogeneous terms 
satisfy an integrability condition. The A, aA/aX and aA/aY coefficients in this 
condition yield the equations 

k, = 0, uco)+ =$ko K-3 = 0, Co = glK-8,  (4b) 

i.e. the normal component of the group velocity is zero a t  the caustic and C, 

equals the transverse group velocity. The solutions for and qll are 

where we have suppressed a possible multiple A, of the eigensolution. It is note- 
worthy that these terms are zero in the absence of a gradient of A .  This means 
that the shape of the waves differs from that of a uniform wave train. 

The double-frequency order-e equations can be solved by inspection: 

#zl = 0, Tz1 = -/$A*. (44 

It happens that for deep-water waves the zero-frequency forcing terms cancel 
out at order E .  In  view of the remarks made in the previous paragraph, we take 
the solution to be 

Finally, a t  order e2 the integrability condition for the #,, and rj12 terms provides 
us with the evolution equation 

#,,independent of 2, qol = 0. 

where, without loss of generality, we have eliminated additional A and aA/a Y 
terms by setting c1 = k, = 0. 
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3. An alternative derivation 
The above analysis has the virtue of being systematic. It makes quite clear 

the assumptions underlying its applicability and even permits higher approxi- 
mations to be calculated. It does however have the drawback of being very 
specific. Here we present a derivation of entirely the opposite character. 

We introduce the local nonlinear dispersion relation for sinusoidal waves in a 
frame of reference moving across the current at velocity c,: 

o = U~-C,Z+Q(X,~,Z, IA~~) .  

Let o and (koj I , )  satisfy the conditions for there to be a linear-theory reflexion 
line along x = 0 and for co to be the group velocity along that line: 

= ~~,~,-~z,+s2~o,~,,z,,o~,0 = u ~ , + [ a ~ / a k ] , ,  o = - C , + [ a q a z ] , .  

Then for waves of frequency w + 0, wavenumber (k, + f ,  I, + %) and amplitude A 
we have the perturbation dispersion relation 

where we have retained the leading-order contributions in wavenumber, position 
and amplitude. The corresponding differential equation is 

1A)2A=O (6) 

(i.e. we can associate small frequency and wavenumber changes with time and 
space derivatives of the complex wave amplitude). For deep-water waves the 
nonlinear dispersion relation is implicitly given by 

Q = gB[k2 + Z2]i + 21 AI2[k2 + Z2]'/f2 + O( I AI4). 

Using this expression in (6) and converting to non-dimensional variables we 
recover ( 5 ) .  

We note that it is only at the last stage in the argument that use was made of 
the fact that we are studying deep-water waves rather than shallow-water 
waves or some entirely different class of wave motion. Thus we can expect that 
(6) will apply in diverse physical contexts. 

4. Steady solutions and their stability 
As we should expect in view of the generality of the above analysis, the 

nonlinear Schrodinger equation (5) or (6) combines the features of other model 
equations. For example, when the nonlinear term is negligible (5) admits an 
Airy-function solution 

A = A i ( 2 X [ U ( 1 ) ~ ~ k 0 / ( 2 / 2 - k ~ ) ] ~ )  

(Smith 1975). Also, when the S term is negligible (5) is the deep-water limit of 
the Davey-Stewartson equation, with the minor modification that the axes are 
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P 

- -0.5 
FIGURE 1. Painlev6 transcendents of the second kind for /3 = 12. 

not aligned along and perpendicular to the wave crests: 

(equation (2.18) of Davey & Stewartson 1974). Here a is the angle between the 
wave crests and the X axis. This limiting case is of particular note as it suggests 
that the solutions to (5) might be subject to the Benjamin-Feir (1967) instability. 

For simplicity we shall confine our attention to the special case in which the 
wave amplitude A is independent of the convected co-ordinate Y .  Further, we 
rescale (6), or its complex conjugate, with respect to the incident wave amplitude 
and the linear-theory length and time scales. Specifically, if the leading-order 
(and uniformly valid) linear-theory solution is 

A = $00 P ( Z )  Ai(P(4) (7a) 

(Smith 1975), then to find the local nonlinear solution we define 
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FIGURE 2. Nonlinear ray solution and asymptotes for /3 = 12. 

10 

This leads to the one-parameter family of equations 

ia,=a PP -pa+Pla/2a, a -  0 as p-+co, @a, b )  
Iplia+ilpl-iap - n-texp(~ilp[4+(iP/2n)ln [ P I  +iconstant) as p-t-co. (8c) 

For deep-water waves /3 is positive or negative according to whether a! is less than 
or greater than 35". The radiation condition can be derived from a far-field 
analysis of the differential equation, on the assumptions that the incident wave 
amplitude is steady and that the long-term averages of the incident and reflected 
wave-action fluxes exactly balance (see appendix). The arbitrary constant in 
the phase can be used to ensure that the steady solutions are real (e.g. the appro- 
priate value is in for the linear case ,8 = 0). 

The steady solutions of (8) are Painlev6 transcendents of the second kind 
(Davis 1962, chap. 7). Qualitatively the solutions resemble Airy functions with 
the transition from sinusoidal to exponential behaviour slightly displaced from 
p = 0 (see figure 1) .  It is only for extremely large values of /3 that there is any 
significant change in the maximum wave amplitude from that predicted by the 
linear-theory Airy-function solution. Even for P = - 12 the maximum is reduced 
by less than I0 yo. 
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The above results contradict Holliday’s (1973) suggestion that finite amplitude 
effects remove the wave barrier. The error in Holliday’s conservation-equation 
analysis is that the mean total fluxes of mass and energy are evaluated on the 
hypothesis that there is no reflected wave. 

A more subtle difficulty arises if the waves are analysed using Whitham’s 
(1966) nonlinear method of averaging. The leading order approximations to the 
amplitude R ( p ,  8) and the phase $(p, /3) are given by 

p = $PR2-+R--4, $, = -71-1R-2 

(see figure 2). For negative 8 there is a real solution only for 

P G - $( - 3 8 1 4 4  

and the position where the graph becomes vertical can be regarded as being an 
estimate both of the displaced caustic position and of the maximum wave height. 
However, for a positive p the solution does not give a clear indication of its 
inapplicability for large positive p. The reason for this shortcoming of Whitham’s 
method is that it takes no account of the far-field boundary conditionand provides 
us with an approximation to the Bi-like solution rather than the required Ai-like 
solution. This trouble can be alleviated if the Whitham-method solution is 
interpreted as an outer solution and is matched with the inner solutions dis- 
cussed above (Peregrine & Thomas 1976). 

An infinitesimal stability analysis of the real steady solutions of (8) leads to 
consideration of the eigenvalue problem 

b,, - p b  + Ab +/!?a2(2b + b*) = 0, 

b - 0 as p+m, Iplib+ilpl-ab, N 0 as p j - c o .  

The steady solution is unstable to infinitesimal disturbances if there exists any 
eigensolution with the imaginary part of h negative. The far-field forms of the 
solutions to the differential equation for b together with the radiation condition 
(of zero incident wave amplitude) suggest that there is stability. 

To demonstrate this it suffices to show that there cannot exist a neutrally 
stable eigenmode (i.e. a mode with A real). For p large and negative we first put 

f = i (p-AlQ,  a = Ip-Al-aG(f),  b = Ip-hl-aH(f;). 

Thus G is of order unity for large f ; ,  and H ( [ )  satisfies the equations 

2P 5 H  e + H + -  ( 2 H + H * ) G 2 - - -  = 0, 
dC2 3 t  36 t2 

H - i d H / d f  - 0 as (+a. 

Next, we formally introduce the slow co-ordinate x = In6 and regard G and H 
as functions of both 6 and x (Nayfeh 1973, chap. 6). This leads to the partial 
differential equations 

- -+H+e-x(= a2H 2a2H +-, ,4G2(2H+H*) 2 a2H aH 5 
at2 
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where we require that H is 2n-periodic with respect to E [the periodicity of G 
being ensured by means of (S)]. For large x the leading-order terms have the 
solution 

Ho = p ( x )  eic +&) eci[, where p N 0 as x-foo. 

At the next order the non-secularity condition yields the coupledlinear differential 
equations 

2-+-(2p+q*) .dP P = 0, -i-+-(2q+p*) dq P = 0. 
dx 3n dx 3n- 

The solutions for p and q are linear combinations of the oscillatory exponentials 
exp ( 5 ix/?/3*n). The solution is compatible with the radiation condition only 
if p = q = 0. Thus we infer that H, and hence b is identically zero, i.e. that there 
does not exist a neutrally stable mode. Numerical solutions to (8) have con- 
firmed that the steady solutions are stable even to large disturbances for both 
signs of$. 

5. Applicability 
The analysis of $ 2  concerns a highly idealized situation. We now consider 

whether i t  is feasible to obtain a similarly detailed solution for the waves when 
we relax the conditions that the caustic is stationary and straight and that the 
current is irrotational. 

With respect to axes moving at the local caustic velocity the caustic is auto- 
matically stationary. However, the relative current speed (or even direction) 
becomes time-dependent. For the solution for the waves to be unchanged to the 
order of the calculations presented above, it suffices that the changes in caustic 
velocity and the movement of the caustic across the current take place on a time 
scale in excess of c-2 wave periods. This means that the nonlinear caustic solution 
has sufficient time to adjust to changes in the wave or current conditions. On 
the Agulhas Current the swell typically has a period of only 12s, whereas i t  
takes several hours either for a wave group to traverse the current or for there 
to be a noticeable change in the direction of frequency of the swell. Thus, as 
regards the local structure of the waves, we can safely relax the stationarity 
requireinent . 

For a curved caustic we must allow both for the curvature and for the fact that 
the current need not be perpendicular to the caustic. If R(y, t )  is the radius of 
curvature and V is the component of velocity across the caustic, then to  the 
order of the calculations given in $2  i t  suffices that we replace E ,  aja Y ,  kU and 
Ua/aX respectively by 

E 1 a EV a v a  
U-+ 1 - e2X/R' 1 - e2X/R D' Icu -k 1 - e2X/R ' dX 1 - 8 X / R  D' 

The only changes to (4a-d) are 

W = k, U(O) + V(O) + K:, C, = V(O) + @K+, 
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while the X term in (5) is changed to 

Weak vorticity of the current can be expected to have a correspondingly weak 
effect upon the nonlinear dispersion relation. Thus the heuristic analysis of 5 3 
permits us to justify the continued use of (5) for arbitrary wide currents. A more 
careful argument is needed if we wish to retain (4a-d). On the length and time 
scales of the wave crests the current vorticity is of order e3. It follows that the 
rotational part of the wave motion, due to distortions of the vortex lines, is 
order e3 smaller than the irrotational part. This is just small enough for the 
irrotational analysis of $2  to remain applicable to the waves. Of course, the 
current cannot be described, even a t  leading order, by the irrotational equations 

For a curved or moving caustic there is the preliminary step of determining 
the position of the caustic and the amplitude of the incident waves near the 
caustic. This can be achieved by obtaining the linear ray description of the waves. 
Indeed, if the ray solutions are continued beyond the point where they touch the 
caustic to give a ray description of the reflected waves, then it is trivial to recon- 
struct the linear-theory caustic solution (Smith 1975). Unsteadiness, curvature 
and vorticity do not radically modify the nonlinear caustic equation. Thus, as 
shown in (7 a, b )  the conversion from a (uniformly valid) linear to a (locally valid) 
nonlinear caustic solution merely entails the replacing of the Airy function by 
the appropriate Painlev6 transcendent. The parameter p will, of course, be a 
slowly varying function of time and position. 

Caustics can occur for a variety of reasons, many of which are independent 
of there being a current. The marked correlation between the occurrence of 
destructive waves and the presence of a strong current would suggest that the 
current does play an important role. The simplest possibility is that incident 
waves at a small angle 6 to the opposing current are refracted away (McKee 
1974). For a parallel current (0, - V(x), 0) the leading-order linear-theory solution 
for the value of $ on the free surface can be written as 

(1). 

4 = $m exp ( i K m  cos ~Y)F(x) Ai(p(x)), 

with 
$?( -p)$ = K,  [ (1. -c, V c0s6)4 - COS261 &ax, 

F ( x )  = ( -p)42n4 l--cos6 sin46 1--cos6 -cos26 . ( c: ) z  [( c: ) 4  I' 
Here xo is the caustic position and $,, K, and c ,  are the values far from the current 
of the velocity-potential amplitude, the wavenumber and the phase velocity of 
the incident waves. At the caustic we have 

dp -4Kemdv 3cosP& -- = [ 
c, ax 10-l V = cm(i  - cod6) sec6, 

ax 

PI, = 2n:cos%Ssin48 
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FIUTJRE 3. Dimensionless wave profile exhibiting slight asymmetry. 

This idealized solution, due to McKee (1974), enables us to make several quali- 
tative predictions concerning the giant waves. First, the caustic is necessarily 
on the seaward side of the current, and the landward side of the current only 
has the locally generated waves. Second, for very long swell with relatively large 
phase velocity there can be a caustic only for waves which are almost directly 
opposed by the current. In  particular, for 12 s waves on a current of up to 2 ms-l, 
6 must be less than 33". Third, the width of the highly amplified region and the 
amplification factor PI,, are fairly insensitive both to the flatness of the velocity 
profile and to 8. For 12s waves on the Agulhas Current representative values 
would be 

-dx/dp - 2 km, PI, = 8. 

Thus the giant waves occupy a tiny fraction of the current width, but the wave- 
height amplification could exceed a factor of 4. All these predictions agree with 
the wave conditions when giant waves are encountered (Mallory 1974). 

6. Wave profile 
The hazard to shipping of the unusual waves on the Agulhas Current is due to 

the combination of large steepness and large wave height. If the waves were less 
steep then a vessel could ride over them and if the wave height were less then 
there would not be such a tremendous weight of water crashing onto the bow of 
the vessel. The mariners' reports seem to suggest that the most destructive waves 
have the added feature of being steepest on the foreward face (Sturm 1974; 
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Mallory 1974). This reduces the time available for the ships’ forepart to rise to 
meet the oncoming wave crest. With large tankers there is a considerable 
premium on speed and an understandable tendency to disregard the wave 
conditions. Thus, having successfully risen over one large wave the ship ends up 
steaming (possibly a t  full speed) downhill and buries its bow in the next wave 
with disastrous effects. 

According to the analysis presented in 3 2 the dimensionless wave profile is 
given to second order by 

7 = - 2 ~ ~ ~ s i n 8 + € { ~ - ~ ( k ~ a ~ / a x + z d A / a ~ )  C O S ~ - ~ K ~ A ~ C O S ~ ~ } .  

The presence of the cos 8 term does indeed permit the wave profile to be asym- 
metric. For illustrative purposes figure 3 shows the dimensionless wave profile for 

E = *, IC, = I = 1, A = 1, aA/ax = -4. 

This can be thought of (with allowance for an E-1 exaggeration of the vertical 
scale) as typifying the waves experienced by a ship as i t  first encounters the 
caustic. Thus, almost straight away the waves are of the most destructive kind. 
The superposition of the shorter locally generated waves can make the asym- 
metry even more pronounced (Mallory 1974, figure 4). 

I should like to thank Prof. Michael Longuet-Higgins for initial encourage- 
ment and to thank C.E.G.B. for financial support. 

Appendix. Derivation of the radiation condition 
Our intention is to express in mathematical terms the fact that the incident, 

but not the reflected wave is independent of any time-dependent behaviour 
near the reflexion line. An ad hoc derivation would be first to derive the linear- 
theory radiation condition and then to use the Whitham’s method to estimate 
the nonlinear correction to the phase. Here we present a more systematic 
derivation based on a far-field analysis of the equation 

ia, = aPP-pa+Pla12a. 

As in the stability analysis, the preliminary change of variables 

emphasizes the sinusoidal structure of the far field: 

Indeed, we can immediately infer that in the far field 

G N p ( t ,  r )  eic + q( t ,  r )  e-e, 

where p and q are slowly varying functions of E. Thus a mathematical statement 
involving only the combination G -iGc or equivalently lplaa +ilpl-h, is in 
effect a statement about the p amplitude factor. 
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Further mathematical analysis is needed if we are to confirm that p is the 
incident wave term, and if we are to determine the systematic effect of the 
nonlinearity upon the phase of the waves. To do this we formally introduce 
the group-velocity and phase-shift co-ordinates 

p = (@J*, x = In( 

and regard G as a function of the four variables t, 7, ,u and x: 

For large x we pose the series representation 

G = G,+exp (- +x) G,+exp ( - $x) G,+ . .., 
where the G&, 7, p, x) satisfy the sequence of equations 

a2Go/at2 + Go = 0, a2Gl/at2 + GI = 0, 

etc. The key hypothesis in solving these equations is that all terms are uniformly 
bounded with respect to the short and middle scales 6 and fi (Nayfeh 1973, 
chap. 6). 

From the f i s t  two equations we have 

Go = p o  eic + qo e-ic, G, = p ,  eic + q, eci5, 

where p j  and qj are independent of t. Next, the equation for G, has a bounded 
solution only if the terms on the right-hand side have zero eiE and eVic Fourier 
coefficients. This condition yields the equations 

aP0 aP0 = o ,  %+aph=o. 
aT ap a7 ap 

Thus a disturbance to po  propagates inwards at the linear-theory group velocity 
as T increases (i.e. p o  is associated with the incident wave). The normalization 
relative to the linear Airy-function solution implies that 

/Pol = tn-4 
In  contrast, the T dependence of lqol is related to the unspecified transient, 
oscillatory or even unstable behaviour of the waves near the reflexion line. 
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Finally, to determine the slow phase shift due to the nonlinearity we need to 
examine the G3 equation. The eit non-secularity condition yields the equation 

The solution for p ,  is bounded if the long-term r average of the terms on the 
right-hand side is zero. Although we do not know the detailed r behaviour of 
lqoJ2, we make the plausible assumption that its long-term average is the same 
as that of /pol2 (i.e. that the long-term averages of the incident and reflected 
wave-action fluxes exactly balance). It then follows that 

po = &r-* exp (i@~-lx + i constant). 

Translating back these results in terms of p, the time-independent incident 
wave has the form 

i7r-3 exp (i;lpl+ + (i,8/27r) In IpI + i constant) as p -+ - 00. 

A condition which eliminates the possibly unsteady reflected wave is 

Iplfa + iJpl--4aP - n-3 exp ( ig)pl% + (iP/27r) In lpl+ i const'ant) as p + - 03. 

This is the radiation condition used in 5 4. If there was forcing of the waxes near 
the reflexion line then we should have to make do with the less precise radiation 
condition 

IJpJta+iJpJ-*a,l - 7r-+ as p+-co. 
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